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Chapter 1
Introduction

The U.S. National Aeronautics and Space Administration (NASA) Deep
Space Network (DSN) is the largest and most sensitive scientific telecommuni-
cations and radio navigation network in the world. Its principal responsibilities
are to support radio and radar astronomy observations in the exploration of the
solar system and the universe. The network consists of three deep-space com-
munications complexes (DSCCs), which are located on three continents: at
Goldstone, in Southern California’s Mojave Desert; near Madrid, Spain; and
near Canberra, Australia. Each of the three complexes consists of multiple
deep-space stations equipped with ultrasensitive receiving systems and large
parabolic dish antennas. At each complex, there are multiple 34-m-diameter
antennas, one 26-m antenna, one 11-m antenna, and one 70-m antenna. A cen-
tralized signal processing center (SPC) remotely controls the 34- and 70-m
antennas, generates and transmits spacecraft commands, and receives and pro-
cesses spacecraft telemetry.

The main features of the complex are the large parabolic dish antennas and
their support structures. Although their diameters and mountings differ, all
antennas employ a Cassegrain-type feed system that is essentially the same as
that of a Cassegrain telescope, used in optical astronomy. Each antenna dish
surface is constructed of precision-shaped perforated aluminum panels of spec-
ified surface accuracy, secured to an open steel framework.

This monograph details the evolution of the large parabolic dish antennas
from the initial 26-m operation at L-band (960 MHz) in 1958 through the
present Ka-band (32-GHz) operation on the 70-m antenna and provides a rather
complete history of the DSN antennas. Design, performance analysis, and mea-
surement techniques are highlighted. Sufficient information is provided to



2 Chapter 1

allow the sophisticated antenna professional to replicate the radio frequency
optics designs. 

The first DSN antenna began operating in November 1958 and was initially
used to support Pioneers 3 and 4. The antenna site was subsequently named the
Pioneer Deep Space Station. It began operation with a focal-point feed system
but was quickly converted to a Cassegrain configuration, which remained until
the antenna was decommissioned in 1981. In 1985, the U.S. National Park Ser-
vice declared the site a national historic landmark.

The present Echo antenna, originally 26 m in diameter, was erected in late
1962 and was extended to 34 m in 1979. Both the Pioneer and Echo antennas
were patterned after radio-astronomy antennas then in use at the Carnegie Insti-
tution of Washington (D.C.) and the University of Michigan. The main features
borrowed from the radio-astronomy antenna design were the mount and the
celestial-coordinate pointing system.

The Venus site began operation in 1962 as the Deep Space Network
research and development (R&D) station and has remained the primary R&D
site for DSN antennas. Almost all technological innovations in DSN antennas
have first been tested at this site. The original 26-m antenna was equipped with
an azimuth–elevation-type mount that could operate at 2 deg/s in azimuth and
elevation. This antenna is no longer in use, replaced in 1990 by the first beam-
waveguide (BWG) antenna. 

The first 64-m antenna was completed in 1966 and was a physical scale-up
of the 26-m antenna. Initial operation was at S-band (2.110–2.120 GHz trans-
mit and 2.27–2.30 GHz receive). In 1968, an X-band feed cone was installed. A
feed cone is a sheet-metal conical shell that houses the feed horn, low-noise
amplifiers, and ancillary equipment. As the need developed for changing feed
cones rapidly, the standard feed-cone support structure was replaced with a
structure capable of supporting three fixed feed cones. In addition, the subre-
flector was modified to permit rapid changing of feed cones by rotating an
asymmetrically truncated subreflector about its symmetric axis and pointing it
toward the feed. Simultaneous multifrequency was provided by a reflex–dich-
roic feed system. In support of the NASA Voyager spacecraft encounter at Nep-
tune in 1989, additional performance was realized by increasing the size of the
antenna to 70 m, using dual-shaped optics, and improving the main-reflector
surface accuracy through the use of high-precision panels. During the 1990s,
the potential use of Ka-band on the 70-m antenna was demonstrated through
R&D experiments, and in June 2000, X-band (7.145–7.190 GHz) uplink capa-
bility was added. 

In 1982, a new design for a 34-m antenna with a common-aperture feed
horn as well as dual-shaped optics designed for optimum gain over noise tem-
perature (G/T ) was introduced into the DSN and designated the high-efficiency
(HEF) antenna. There is now one HEF at every DSCC.
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Early in 1990, a new R&D antenna was fabricated and tested as a precursor
to introducing BWG antennas and Ka-band frequencies into the DSN. The R&D
antenna was initially designed for X- and Ka-bands but was subsequently
upgraded to include S-band. Based upon the knowledge gained with this
antenna, operational BWG antennas were included in the network. There are
three 34-m BWG antennas at Goldstone, one in Spain, and one in Australia,
with one under construction (as of 2002) in Spain and a second planned for
Australia.

Also in the 1990s, two BWG antennas capable of supporting X-band high
power were built and tested. As they were only a technology demonstration,
their original design was never introduced into the network. Rather, one of the
two was retrofitted for S-band support and is still in use in that capacity.

This monograph will trace the history of DSN large-antenna technology
through the development and implementation of the antennas at the Goldstone
complex, since, with the exception of the 64-to-70-m upgrade, the technology
improvements were first introduced there. Chapter 1 presents the methods of
analysis, with supporting mathematical details, and measurement and design
techniques for reflector antennas. Chapters 2 through 9 cover each type of
antenna, and Chapter 10 explores current thinking.

1.1 Technology Drivers

The prime mission of the DSN is to receive extremely weak signals over
vast interplanetary distances. A key element of the telecommunications-link per-
formance is the received power signal-to-noise ratio (SNR), which is given by

(1.1-1)

where

PT  = spacecraft transmit power

GT  = transmit gain

GR = receive gain

R = distance to the spacecraft

N = total noise

AT  = the effective area of the transmit (spacecraft) antenna

AR = the effective areas of the receive ground antennas

Ts = receive system-noise temperature

� = wavelength
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k = Boltzman’s constant

B = bandwidth.

To do its part effectively, the ground antenna system must maximize the
ratio of received signal to the receiving system noise power, which is measured
by an antenna figure of merit (FM), defined as the ratio of antenna effective
area (or equivalently gain) to system-noise temperature.

The receive temperature consists primarily of the antenna feed system and
amplifier contributions. For assessing the antenna FM, it is desirable to draw an
imaginary reference plane between the receiver system and the antenna system,
thus placing all noise contributions in one of these categories. If the receiver
contribution (including the feed-system losses) is given by TR and the antenna
noise contribution by TA, then the FM will be given by

(1.1-2)

It can be readily seen that the antenna noise-temperature properties are very
significant contributors to the FM, especially for the cases of low receiver
noise-temperature systems. Also, the significant effect of total system-noise
temperature on the FM is apparent. Thus, to maximize the FM for a given
antenna size and frequency of operation, it is necessary to both maximize the
antenna gain and minimize the total system-noise temperature. Since the indi-
vidual contributions to noise temperature are additive and essentially indepen-
dent of each other, it is necessary to individually minimize each contribution. If
any one of the noise contributions is large, minimizing the others only margin-
ally improves the FM. However, by using cryogenic amplifiers, the receiver
noise-temperature contribution can be small (as low as 2 to 3 K for the highest-
performing masers), and it then becomes imperative to minimize both the
antenna and feed-system contributions. For ambient conditions, it should be
noted that feed-system losses contribute to noise temperature at the rate of 7 K
per 0.1-dB loss.

Techniques for maximizing the antenna gain and aperture efficiency of
reflector antennas involve control of the illumination function. By definition, a
feed system, which uniformly illuminates the antenna aperture with the proper
polarization and has no spillover energy or other losses, possesses 100 percent
aperture efficiency. In practice, however, some spillover is present due to the
finite size of the feed illuminating a single reflector system or the subreflector
illuminating the main reflector of a dual reflector system. One key result of this
spillover is a thermal-noise contribution from the physically hot ground.
Clearly, then, an ideal feed system has a very rapid energy cutoff at the reflector
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edge, thereby maintaining relatively uniform reflector illumination while at the
same time minimizing spillover energy.

Many design principles for large reflector antennas are borrowed from
those successfully used in designing optical telescopes. For example, the
earliest antenna design used a two-reflector Cassegrain system in which the
main reflector was a paraboloid and the subreflector a hyperboloid. Subsequent
designs incorporated dual-shaped optics, which offer higher efficiency for the
same-size aperture. Although not as yet used in the DSN (as of 2002), clear-
aperture designs (in which the radiating aperture is not blocked by either the
subreflector or subreflector supports) offer the potential for even higher
efficiencies.

Surface accuracy is also an important parameter in determining effective
aperture area, as is demonstrated in Fig. 1-1, which plots the reduction in gain
versus root-mean-square (rms) surface error. It demonstrates that the rms sur-
face error must be an extremely small fraction of the reflector diameter.

Surface errors fall into two main categories: (a) time-invariant panel
mechanical manufacturing errors and panel-setting errors at the rigging angle
and (b) time-varying errors induced by gravity, wind, and thermal effects.
Improvements in panel manufacturing and in panel setting using microwave
holography have left gravity distortions as a function of elevation angles as the
major error source in DSN antennas for higher-frequency operation.

Fig. 1-1. Gain loss due to reflector surface error.
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1.1.1 Frequency Bands Allocated to the Deep Space Network

Frequency ranges have been allocated by the International Telecommuni-
cation Union (ITU) for use in deep-space and near-Earth research. These
ranges are listed in Table 1-1.  

1.2 Analysis Techniques for Designing Reflector 
Antennas

Reflector antennas have existed since the days of Heinrich Hertz. They are
one of the best solutions to requirements for cost-effective, high-dB/kg, high-
performance antenna systems.

For a large ground antenna, it is not feasible to build a scale model to verify
a new design. Hence, extremely accurate design-analysis tools are required.
Fortunately, physical optics (PO) provides the required performance-estimate
accuracy. All of the DSN antennas were designed and analyzed using PO, and
the measured performance is within a few percent of the calculated values.

In addition to PO, many other techniques are required to completely design
and characterize an antenna system. For example, accurate programs to design
and analyze the feed horn and transform far-field patterns to near-field patterns
for use in the PO analysis are essential. Programs to determine the reflector
shape for maximum gain, or G/T, are also used. And quasioptical techniques
such as geometric optics (GO), Gaussian-beam analysis, and or ray tracing are
useful for a quick characterization of BWG systems. Tools to design and ana-
lyze frequency-selective surfaces are needed for use in multifrequency systems.
And since the FM for these antennas is G/T, accurate programs to predict noise
performance are required.

The basic mathematical details of each of these techniques are given in this
section, with examples of their use sprinkled throughout this monograph.

Table 1-1. Allocated frequency bands (GHz).

Band

Deep-Space Bands 
for Spacecraft Farther Than 

2 Million km from Earth

Near-Earth Bands 
for Spacecraft Closer Than 

2 Million km from Earth

Uplinka Downlinkb Uplinka Downlinkb

S 2.110–2.120 2.290–2.300 2.025–2.110 2.200–2.290
X 7.145–7.190 8.400–8.450 7.190–7.235 8.450–8.500
Ka 34.200–34.700 31.800–32.300 Not applicable Not applicable

a Earth to space.
b Space to Earth.
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1.2.1 Radiation-Pattern Analysis

By far the most important analytical tool is physical optics, which is used
to calculate the scattered field from a metallic reflecting surface—in this case, a
reflector antenna. Electric currents, which excite the scattered field, are induced
on the conducting surface by an incident wave assumed to be of a known
amplitude, phase, and polarization everywhere in space (from a feed or other
reflecting surface, for example). The PO approximations to the induced surface
currents are valid when the reflector is smooth and the transverse dimensions
are large in terms of wavelengths. The closed reflecting surface is divided into
a region S1, which is illuminated by direct rays from the source (“illuminated
region”) and a region S2, which is geometrically shadowed (“shadowed
region”) from direct rays from the source (Fig. 1-2). The PO approximations
for the induced surface current distribution are 

(1.2-1)

where   is the surface normal and Hinc the incident field. The expressions are
then inserted into the radiation integral [1] to compute the scattered field.

Rusch and Potter [2] provide a good introduction to the early techniques
used for analyzing DSN reflector antennas. More recently, due primarily to the
orders-of-magnitude improvements in computer speed and memory, a very sim-
ple but extremely robust algorithm has emerged as the computer program of
choice for computing the PO radiation integral. Its initial limitation to small
reflectors was primarily due to the speed and memory limitations of the then-
existing computers. The algorithm is documented in [3] and [4], but because of
its extreme importance and to provide a fairly complete reference, it is repeated
here.

One of the simplest possible reflector-antenna computer programs is based
on a discrete approximation of the radiation integral. This calculation replaces
the actual reflector surface with a triangular facet representation so that the

Fig. 1-2. The physical optics approximation: (a) original problem and
(b) approximation.
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reflector resembles a geodesic dome. The PO current is assumed to be constant
in magnitude and phase over each facet, so the radiation integral is reduced to a
simple summation. This program was originally developed in 1970 and has
proven to be surprisingly robust and useful for the analysis of reflectors, partic-
ularly when the near field is desired and the surface derivatives are not known.

Two improvements significantly enhanced the usefulness of the computer
programs: the first was the orders-of-magnitude increase, over time, in com-
puter speed and memory and the second was the development of a more sophis-
ticated approximation of the PO surface current, which permitted the use of
larger facets. The latter improvement is due to the use of a linear-phase approx-
imation of the surface current. Within each triangular region, the resulting inte-
gral is the 2-D Fourier transform of the projected triangle. This triangular-shape
function integral can be computed in closed form. The complete PO integral is
then a summation of these transforms.

1.2.1.1 Mathematical Details. The PO radiation integral over the reflector
surface, �, can be expressed as [5]

(1.2-2)

in which 

r  = the field point

r�  = source point

R = �r – r�� is the distance between them 

= (r – r�)/R is a unit vector

J(r� )� the surface current

� = wavelength

k = 2�/�.

For the purpose of analysis, the true surface, �, is replaced by a contiguous
set of triangular facets. These facets, denoted �i, are chosen to be roughly equal
in size with their vertices on the surface, �. Fig. 1-3 shows a typical facet and
its projection onto the x, y plane. Let (xi, yi, zi) represent the centroid of each tri-
angle where the subscript i = 1, ..., N is associated with a triangle. Then, the
field obtained by replacing the true surface, �, by the triangular facet approxi-
mation is
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In Eq. (1.2-3), J is now the equivalent surface current evaluated on the tri-
angular facets. Since the triangles are small, it is expected that  and R do not
vary appreciably over the area of a given facet. Thus, let  and Ri be the value
obtained at the centroid (xi, yi, zi) of each facet and approximate Eq. (1.2-3) by

(1.2-4)

����-��

Assume that the necessary transformations have been performed so that the
incident field, Hs, is given in terms of the reflector coordinate system. Then

(1.2-6)

Next, assume that the incident field can be represented by a function of the
form

Hs  =  hs(ri) (1.2-7)

Fig. 1-3. Reflector-analysis coordinate systems and 
a typical triangular facet.
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where rs is the distance to the source point and rsi is the distance from the trian-
gle centroid to the source point. Then, Eq. (1.2-5) can be written

(1.2-8)

Making use of the Jacobian and approximating

(1.2-9)

in which ai, ui, and vi are constants, the expression can be rewritten as

(1.2-10)

where the surface normal to the surface z = f(x,y) is

(1.2-11)

where fx =  and the Jacobian is

(1.2-12)

It may now be observed that this integral is the 2-D Fourier transform of the ith

projected triangle ��expressed as

(1.2-13)

which can be computed in closed form as described in [6]. The full radiation
integral is then the sum of all the transforms of the individual triangles.

1.2.1.2 Application to Dual-Reflector Antennas. The PO integration meth-
odology is incorporated in a sequential fashion for the analysis of the dual-
reflector antenna system. Initially, the feed illuminates the subreflector, and the
currents on the subreflector surface are determined. Subsequently, the near
fields scattered from the subreflector are used to illuminate the main reflector,
and its induced currents are determined. The main reflector scattered fields are
then determined by integrating these currents.
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Many coordinate systems are required to allow flexibility in locating and
orienting the feed, subreflector, main reflector, and output-pattern generation.
The relation among the various coordinate systems is depicted in Fig. 1-4.

1.2.1.3 Useful Coordinate Transformations. In the discussion of the preced-
ing sections (1.2.1 and 1.2.1.2), the analysis is performed using two distinct coor-
dinate systems: reflector and feed coordinates. In addition, it is sometimes
convenient to display the computed patterns in yet another coordinate system.
Consequently, one must know the transformation equations that permit coordi-
nates and vectors described in one coordinate system to be expressed in terms of
some other coordinate system. The transformation may require both translation
and rotation. The required transformations are described below. They are the Car-
tesian-to-spherical transformation and coordinate rotations using Eulerian angles.

The Cartesian-to-spherical transformation is conveniently summarized
in matrix form. With the Cartesian components of a vector, H, denoted
(Hx, Hy, Hz) and the spherical components (Hr , Hq, Hf), one finds that the
transformation is

(1.2-14)

The inverse transformation is just the transpose of the above matrix.
Rotations are handled by the use of the Eulerian angles (%,&,'). These

angles describe three successive rotations that bring one Cartesian system

Fig. 1-4. Dual-reflector coordinate systems.
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into alignment with another. Let the two systems be denoted (x1, y1, z1) and
(x2, y2, z2). As illustrated in Fig. 1-5, the angles are defined as follows:

� describes a positive rotation about the z1-axis, which brings the x1-axis
into the x�-axis aligned with the line of nodes (the line of intersection
between the (x2, y2) and  (x1, y1) planes)

� describes a positive rotation about the line of nodes (the x�-axis) that
brings the z1-axis to z2

� describes a positive rotation about the z2-axis, which brings the x�-axis
to the x2-axis.

The phrase “positive rotation” means the direction of increasing angular
measure as defined by the right-hand rule with respect to the axis about which
the rotation occurs. Each of the rotations just described is performed using the
standard rotation of coordinate formulas of plane analytic geometry.

When these expressions are written in matrix form and applied succes-
sively as described above, one obtains the following matrix equation that repre-
sents a general 3-D rotation of coordinates:

Fig. 1-5. Euler-angle definitions.



Introduction 13

(1.2-15)

where the individual matrix elements are

A11 = cos � cos � – sin � cos � sin �

A12 = cos � cos � + sin � cos � cos �

A13 = sin � sin �

A21 = –sin � cos � – cos � cos � sin �

A22 = –sin � cos � + cos � cos � cos �

A23 = cos � sin �

A31 = sin � cos � 

A32 = –sin � cos �

A33 = cos ��

The inverse transformation is the transpose of the matrix given above.
Although the formulas are presented in terms of coordinate transforma-

tions, the transformation matrix is equally valid for the Cartesian components
of a vector. Thus, the components of a vector, H, transform as 

(1.2-16)

Further information can be found in [7].

1.2.1.4 A Numerical Example of Radiation-Pattern Analysis. In the 1980s,
a FORTRAN program was written to perform the linear phase calculations
indicated above. The program was extensively verified by comparing with
measured data, for example, [8], and many other computer codes. A simple but
interesting example is that of an ellipse, shown in Fig. 1-6. 

The projected aperture of the ellipse is about 3 m. In the offset plane, cen-
tered on the xp axis, the illumination function is a cos42 � pattern function
(22.3-dB gain), and the frequency is 31.4 GHz. The ellipse is about 350� along
the major axis. Figure 1-7 compares the constant-phase approximation for three
different grid densities: approximately 4000 and 10,000 and 23,000 triangles.
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This illustrates a general trend of the method; that is, depending on the size of
the triangles, there is an angular limit over which the solution is valid. Figure 1-
8 compares the linear-phase approximation with the constant-phase approxima-
tion for the 4000-triangle case and demonstrates that the angular range is larger
with the linear-phase approximation.   

1.2.2 Feed-Horn Analysis

An equally critical aspect of the analysis of reflector systems is the ability
to accurately compute the radiation pattern of the feed. More details on the
design of the feeds will be given later, but the analysis technique for computing
the radiation patterns of the feed is summarized below.

Fig. 1-6. Ellipse geometry.
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Fig. 1-7. Ellipse example: constant-phase
approximation for offset plane.

Fig. 1-8. Ellipse example: constant versus
linear phase for offset plane.
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Two types of feed horn possessing equal E- and H-plane patterns are com-
monly used. The first is the dual-mode feed horn [9], and the second is the cor-
rugated feed horn [10]. In the dual-mode horn, a dominant-mode circular
waveguide is connected to another guide of slightly larger diameter, where
modes up to (transverse magnetic) TM11 may propagate, via a step transition.
The step size is chosen to generate the precise amount of TM11 mode from the
(transverse electric) TE11 mode so that when the two modes travel through the
flared horn section that follows, the E- and H-plane patterns are equalized. The
bandwidth of this feed horn is limited since the two modes must arrive at the
horn aperture in phase, and the two modes have phase velocities that vary dif-
ferently with frequency.

In the corrugated feed horn, the single-mode smooth-wall waveguide is
connected to a corrugated waveguide that supports only the (hybrid) HE11
mode. Some matching between the waveguides is provided by gradually
changing from �/2 slot depth to �/4 slot depth in a short transition region.
Throughout the transition region, only the HE11 corrugated waveguide mode
may propagate, and the E- and H-plane radiation patterns of this mode become
nearly equal when the balanced condition is reached (slot depth = ~�/4). The
bandwidth of this horn is larger than that of the dual-mode horn because the
transverse electric field patterns and, hence, the radiation pattern of the HE11
mode are relatively insensitive to small changes in slot depth around the bal-
anced condition (slot depth = ~�/4). After the HE11 mode is established in the
single-mode corrugated waveguide, the guide is gradually flared, without
changing the slot depth, to the required aperture size.

The corrugated section is analyzed using a computer code developed by
Hoppe [11–13]. The analysis follows the method of James [14], expanding the
fields inside each fin and slot in terms of circular waveguide modes, and match-
ing the fields at each slot–fin boundary. All of the possible propagating modes
as well as a sufficient number of evanescent modes are matched at each bound-
ary, with results for successive edges and waveguide lengths cascading as the
analysis moves through the device. In this way, the interaction between the
fields of nonadjacent as well as adjacent slots are taken into account. The result
of the calculation is a matrix equation relating the reflected and aperture modes
to the input modes.

If a1 is a vector containing the power-normalized amplitudes of the input
modes, then we may calculate the reflected modes, b1, and the aperture modes,
b2, using

(1.2-17)

(1.2-18)

# $ 1212 ab  S  �

# $ 1111 ab  S  �
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Here, [S21] and [S22] are the scattering matrices resulting from the com-
puter run. (See the appendix of [14].) They depend only on frequency and
device dimensions, not input modes. We may, therefore, specify any input vec-
tor a1 and calculate the reflected and aperture fields. Using the normalized
amplitudes calculated above and the normalized vector functions giving the
field distributions for each mode, we find the aperture field EB. The far field is
then calculated by the method described by Silver and Ludwig [15,16].

(1.2-19)

where

� = free-space permeability

� = angular frequency = 2� f

= unit vector normal to aperture surface

HB = aperture magnetic field

� = e–jkr/ r

EB = aperture electric field

= gradient operator

f = frequency

ds = incremented area on aperture surface

k = 2�/�

r = distance from the origin to the far-field point.

When EB and HB are represented in terms of circular waveguide modes, the
resulting integrals have already been evaluated by Silver [16]. Therefore, given
an input vector and the scattering matrix, we determine the aperture modes and
composite far-field patterns. A spherical-wave analysis is then used to get the
feed-horn near-field pattern for use in the PO software. Throughout the analy-
sis, care must be taken to ensure proper normalization of the field amplitudes in
terms of power. The smooth wall conical feed horn is modeled with the same
software, only approximating the horn taper with small steps and zero-depth
corrugated slots.

The mode-matching technique for analyzing corrugated horns yields excel-
lent agreement with the measured patterns—so much so, in fact, that if the
computed and measured patterns do not match, it is most likely due to measure-
ment and/or manufacturing errors. A recent example of a fairly complicated
horn is the X-/X-/Ka-band horn described in [17] and Chapter 9 of this mono-
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graph. A comparison of the computed and measured patterns is shown in
Figs. 1-9 and 1-10. This type of agreement is typical for a well-manufactured
corrugated feed horn.

1.2.3 Spherical-Wave Analysis

Spherical-wave-expansion coefficients are normally used as one part of a
sequence to analyze an antenna system. The basic role of the technique is to
transform far-field patterns to the near-field H-field so that PO may be used for
reflectors in the near field of their illumination source.

The theory of spherical waves is described in [18] and will only be briefly
outlined here. Any electromagnetic field in a source-free region may be repre-
sented by a spherical-wave expansion. In general, the expansion must include
both incoming and outgoing waves. If the field satisfies the radiation condition,
only outgoing waves will be present, and the expansion will be valid outside
the smallest sphere enclosing all sources (the sphere center must be at the coor-
dinate origin used for the expansion). The radial dependence of the spherical
waves is then given by the spherical Hankel function . The second com-
mon case is an expansion valid inside the largest sphere enclosing no sources.
In this case, the incoming and outgoing waves are present in equal amounts,
producing a radial dependence given by the spherical Bessel function jn (kR).

Although the spherical-wave expansion can be applied to either of these
two most common cases, the version used for the DSN assumes outgoing
waves.    

In either case, the input data that is used to specify the field is the tangential
E-field on the surface of a sphere. For the first case, the data-sphere radius must
be greater than or equal to the radius of the sphere enclosing the sources. For
far-field data, the data-sphere radius is considered to be infinite. For the second
case, the data-sphere radius must be less than or equal to the largest sphere
enclosing no sources, and must be greater than zero.

The maximum value of the Hankel function index that is needed to closely
approximate the field is roughly equal to ka (ka + 10 is typical, but in some
cases a lower limit will work), where a is the radius of the sphere enclosing all
(or no) sources for the first and second case, respectively.

Input data is specified on a grid of points defined by the intersection of con-
stant contours of ) and (. The amplitude and phase of Eq and Ef are given at
each point. The minimum number of ) values is roughly 1.2 times the maxi-
mum value of n.

The azimuthal dependence of spherical waves is given by sin (m() and
cos (m(). In general, m runs from 0 to the maximum value of n. Frequently,
symmetry can be used to reduce the number of azimuthal terms. A conical feed
radiates only m = 1 modes, and reflection from a body of revolution will main-
tain this behavior. Secondly, there is an even and odd ( dependence, and fre-

)(2 kRhn
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Fig. 1-9. Measured and computed patterns at
8.45 GHz (X-band receive) for the complete feed
horn.

Fig. 1-10. Measured and computed patterns at
7.19 GHz (X-band transmit) for the complete feed
horn.



20 Chapter 1

quently, only one will be present. For the even case,  Eq can be expanded in
only sin (m() terms and Ef in cos (m() terms. For the odd case, this is reversed.
The minimum number of ( values for the data sphere is, in general, 2M + 1,
where M is the maximum value of m. Symmetry can be used to reduce this
value appropriately. The output of the computer program is the set of spherical-
wave-expansion coefficients. These coefficients may then be used to compute
the field anywhere within the region of validity. Therefore, the essential utility
of the program is to take data consisting of the tangential E-field on a sphere
(whose radius may be infinite) and provide the means of computing the field—
all three components of E and H—at any other point in the region of validity.

The computer program used is patterned after that in [19].

1.2.4 Dual-Reflector Shaping

As initially used in the DSN, the Cassegrain reflector system had a para-
bolic main reflector and hyperbolic subreflector. The efficiency of these reflec-
tors is primarily determined by (a) the ability of the feed system to illuminate
only the reflectors while minimizing the energy that radiates elsewhere and (b)
the ability of the feed to uniformly illuminate the parabola. Item (a), above, is
termed “spillover efficiency” and (b) “illumination efficiency.” The illumina-
tion efficiency is 100 percent when the energy density on the entire main reflec-
tor aperture is a constant.

Feed-horn patterns always taper gradually from their central maxima to
nulls. If all this energy is intercepted by the reflector (for maximum spillover
efficiency), the illumination is far from uniform, and the illumination efficiency
is very poor. Consequently, any attempt to obtain nearly uniform illumination
will result in a great loss of energy in spillover. Therefore, a compromise must
be made. A common choice for both a prime focus system and the Cassegrain
system is a 10-dB taper of the illumination pattern at the parabolic edge. This
selection results in a combination of spillover and illumination efficiency of
from about 75 to 80 percent.

It is possible, however, to change the shape of the two reflectors to alter the
illumination function and improve efficiency. This methodology is termed
dual-reflector shaping and was first introduced by Galindo [20], who demon-
strated that one could design a dual-reflector antenna system to provide an arbi-
trary phase and amplitude distribution in the aperture of the main reflector.
Thus, if one chose a uniform amplitude and constant phase, 100 percent illumi-
nation efficiency could be achieved. With the feed pattern given, the subreflec-
tor size would be chosen to give minimal spillover.

1.2.4.1 Theoretical Solution for the Symmetric Case. The complete solu-
tion can be found in [20] and [21] and only the uniform aperture case will be
summarized below. 



Introduction 21

The geometry of the symmetric dual-reflector system is shown in Fig. 1-11.
Due to circular symmetry, the synthesis reduces to the determination of the
intersection curve (of the surface) with the plane through the axis of symmetry,
that is, the x,y plane. 

The synthesis method uses the analytical expressions of GO principles
together with a geometry for the reflectors to develop a pair of first-order, non-
linear ordinary differential equations of the form

(1.2-20)

Fig. 1-11. Coordinate system for shaping.
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which leads to cross sections of each reflector when subject to boundary condi-
tions such as

(1.2-21)

which are then solved by a high-speed digital computer.
The optical principles that are used to develop the required equations are

that (a) the angle of incidence is equal to the angle of reflection (Snell’s Law),
(b) energy flow is conserved along the ray trajectories, and (c) surfaces of con-
stant phase form normal surfaces to ray trajectories.

The incident field is assumed to have a spherical-phase function, that is, a
phase center and a power-radiation pattern F(�). For uniform phase in the aper-
ture, the path length, r + r� + r�, must remain constant for all �. Also, the ampli-
tude function in the aperture I(x) must also be equal to a prescribed distribution
or a constant for maximum peak gain. 

The equation for equal path lengths in the phase front is obtained from trig-
onometry:

(1.2-22)

where (x,y) and (r,�) are the coordinates of points on the main reflector and
subreflector, respectively.

The application of Snell’s law to the two surfaces defines a relationship
between the angles shown and the first derivates (slopes) of the surfaces. These
are 

(1.2-23)

(1.2-24)

Since the dual-reflector system is symmetrical about the y-axis, the total
power within the increment d� of the pattern F(�) will be F(�)2��sin �d�. Sim-
ilarly, the total power within the increment dx of the main antenna aperture is
I(x)2�dx, where I(x) is the illumination function of the antenna aperture. Mak-
ing I(x) constant and equating the total power from ��= 0 to angle � to that
within x, and normalizing by the total power, one obtains

(1.2-25)
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These four equations now have five dependent variables—x, y, r, �, and
�—and can be solved to provide equations for the surfaces.

Although the above procedure yields an optimum-gain antenna, the FM of a
DSN antenna, as stated previously, is G/T. Dual-reflector shaping is based upon
GO, but due to diffraction, the feed-horn energy scattered from the subreflector
does not fall abruptly to zero at the edge of the main reflector. By choosing design
parameters such that the geometric ray from the subreflector edge does not go all
the way to the outer edge of the main reflector, it is possible to have the feed-horn
energy at a very low level relative to the central region of the main reflector,
which, in turn, results in the rear spillover noise contribution’s becoming accept-
ably small. This procedure results in slightly lower illumination efficiency, but
the significant reduction in noise from spillover also results in an optimum G/T
ratio. The first antenna in the DSN to use dual-reflector shaping was the HEF
antenna, the design of which is discussed in Chapter 6 of this monograph.

1.2.4.2 Offset-Shaped Reflector Antennas. The formulation shown in Sec-
tion 1.2.4.1 (above) is for circularly symmetric reflector geometries. The exact
solution has also been developed for offset geometries [22,23]. Offset geometry
will have higher efficiency than symmetric geometry because the central block-
age due to the subreflector can be eliminated. In the early 1980s, a 1.5-m
antenna with an offset geometry was designed and built; it had an efficiency of
84.5 percent—the highest ever recorded [24]. However, due to the significantly
greater mechanical complexity for an offset design, an offset-geometry antenna
has never been incorporated into the DSN.

1.2.5 Quasioptical Techniques

Multiple reflector systems are typically analyzed by using PO, Gaussian
beams, or ray-tracing techniques [25]. While PO offers high accuracy, it does so
at the expense of computation time. This trade-off becomes particularly apparent
in the analysis of multiple reflector antennas, such as BWG antennas, where PO
is used to compute the currents on each reflector, based on the currents of the
previous reflector. At the other end of the spectrum are ray tracing approaches
that ignore diffraction effects entirely. These methods are fast but sacrifice the
ability to accurately predict some effects such as cross-polarization.

More accurate than ray optics but less accurate than PO is Gaussian-beam
analysis, which uses an appropriate set of expansion functions to model the
field between the reflectors [26]. If the set is chosen wisely, only a few coeffi-
cients need to be determined from each reflector current. The field is then com-
puted at the next reflector by using the expansion functions and their
coefficients rather than by using the previous reflector current. For a BWG sys-
tem with no enclosing tubes, an excellent set of expansion functions is the
Gaussian-beam-mode set. In many cases, a preliminary design, which includes
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diffraction effects, may be obtained by considering only the fundamental mode
and a thin-lens model for the reflectors. Higher-order modes are included to
model the effects of the curved reflector; these effects include asymmetric dis-
tortion of the beam, cross-polarization, and beam truncation.

1.2.5.1 PO Technique. The PO approach has been described in detail in Sec-
tion 1.2.1 (above).

1.2.5.2 Gaussian-Beam Algorithm. In this section, the use of higher-order
Gaussian beams to determine scattering by an arbitrary set of relectors is given.
The geometry is depicted in Fig. 1-12. The steps for computing scattering are

1) Using PO, compute the current on the first reflector; the incident magnetic
field is provided either by a feed model or by an incident set of Gaussian-
beam modes

2) Using ray tracing, compute the direction of propagation for the reflected
Gaussian-beam set; using a gut ray in the input direction specified by the
feed coordinate system or by the input Gaussian-beam-set propagation

Fig. 1-12. Gaussian-beam geometry.
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direction and the reflector surface description, compute the gut-ray
direction for the output Gaussian-beam set

3) Determine the waist size and location for the output beam set

4) Determine the amplitudes of the individual modes in the output mode set

5) Repeat steps 1 to 4 for each additional reflector in the chain; in each of
these cases, the previous Gaussian-beam set provides the input field for the
current calculation

6) Using PO, compute the far-field pattern radiated by the final mirror.

One of the key steps in computing scattering of Gaussian-beam-mode sets
by arbitrary reflector is the determination of the best choice for the output beam
set’s waist and its location. The problem is depicted in Fig. 1-13, where win and
lin are the input waist and location, and wout and lout are the same parameters for
the output beam set. Once these parameters are determined, computation of the
mode amplitudes from the current on the reflector follows easily. Proceed as
follows:

1) Compute a waist at the reflector, denoted as wmatch; when the input to the
reflector is a Gaussian-beam-mode set, compute the input waist at the point
of impact on the reflector; when the input to the reflector is a feed horn,
determine an estimate of the waist from the reflector current (the output
beam set is required to produce a waist equal to wmatch at the point of
impact; completing this step results in one of the two equations needed to
compute the output beam-set parameters)

2) Next, derive a suitable set of points on the reflector to use for field
matching or path-length matching (these points are generally chosen from
within the waist at the point of impact)

3) Compute a phase center location for the input fields (for a Gaussian-beam-
mode set, this is determined from the input radius of curvature at the point
of impact; for a feed input, assume the phase center to be at the origin of
the feed coordinate system)

4) Using the set of points on the reflector, compute the set of path lengths
from the input phase center at each point, as shown in Fig. 1-13

5) Search for the output phase center (output radius of curvature), sweeping
along the direction of the output ray (a minimum in the spread of the total
path lengths from input phase center to reflector and then to output phase
center is sought; generally, a single minimum is found either in front of or
behind the reflector)

6) Using the output radius of curvature and the determined waist at the
reflector, compute the waist size and location of the output beam set.
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The approach for determining the amplitudes of Gaussian-beam modes
directly from reflector current will now be summarized. Note that two approxi-
mations are necessary. First, the reflector current is approximated to be the PO
current—a good approximation for large reflectors with low edge illumination.
Second, the Gaussian-beam modes are used as solutions to Maxwell’s equa-
tions in free space—never true but a good approximation if the mode fields are
required only in the paraxial region. The Gaussian-beam modes used are given
in terms of Laguerre polynomials, as described by Goldsmith [27]. Each mode
has a polarization, either x or y; a radial index, p; and an azimuthal index, m.

For two arbitrary fields and their associated sources, denoted by A and B,
the reciprocity theorem when applied to an arbitrary volume, V, and its enclos-
ing surface, S, may be stated as follows:

(1.2-26)

Fig. 1-13. Ray-optics approach for determining output-beam parameters.
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A half-space completely enclosing the reflector is chosen as V, with the sur-
face, S, perpendicular to the direction of propagation for the output beam set.
For this particular application, we choose the output Gaussian-mode set, with
unknown mode amplitudes, as the A field, with the reflector current inside the
volume being its source. For the B field, we choose a test field, the conjugate of
the ith Gaussian-beam mode now propagating toward the reflector. The source
for this field is chosen to be outside the volume, V. We then have for the fields,

(1.2-27)

Using the reciprocity theorem and the orthogonality condition for the
Gaussian-beam modes on the infinite surface, S, we can obtain the desired
equation for the unknown coefficients:

(1.2-28)

1.2.5.3 Ray Analysis Algorithm. A bundle of rays is launched from the feed
point to the first reflector. The ray density distribution in angular space is taken
to be proportional to the power pattern of the input feed. The rays are then
traced through the multiple reflector system. A flat plate is placed a large dis-
tance from the final mirror, perpendicular to the central ray. The rays from the
final mirror are traced to the flat plate. The density distribution of the rays on
the flat plate can be processed to yield the far-field pattern scattered from the
last mirror.

1.2.5.4 An Example. Consider the three-curved-mirror BWG system used in
the NASA/Jet Propulsion Laboratory (JPL) 34-m R&D BWG antenna (see
Chapter 7 for a more detailed discussion of this antenna). The physical configu-
ration of the BWG consists of a beam magnifier ellipse followed by an imaging
pair of parabolas. The system is designed to operate from 2 to 35 GHz.
Figures 1-14 and 1-15 compare the three methods at 2.3 and 32 GHz. Recall
that the ray optics technique is frequency independent.
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Of the three techniques discussed above, the PO technique is the most
accurate, albeit most time consuming. For the BWG system, higher-order
Gaussian modes provide a very good estimate of performance, with minimal
computer time. Ray optics is generally not adequate for diffraction pattern
calculations.

Fig. 1-14. Comparison of three methods at 
2.3 GHz (S-band receive).

Fig. 1-15. Comparison of three methods at
 32 GHz (Ka-band receive).



Introduction 29

1.2.6 Dichroic Analysis

The ability to transmit and receive simultaneously at multiple frequency
bands is an important requirement for the DSN. It is usually accomplished by
using either a dual-band feed horn or separate feed horns and a frequency-
selective surface (FSS), typically referred to as a dichroic plate. As dichroic
plates are an important aspect of the DSN antenna design, this section presents
a technique for analyzing them. For a more complete discussion of DSN use of
dichroic plates, see Chapter 5 of this monograph.

The first use of a dichroic plate was as part of the reflex–dichroic feed sys-
tem used on the DSN’s first 64-m antenna. That plate consisted of circular
holes in a half-wavelength-thick metallic plate. All subsequent dichroic plates
used in the DSN were also thick plates with holes. The discussion that follows
treats the most general case of the analysis of a thick dichroic plate with arbi-
trarily shaped holes at arbitrary angles of incidence. However, most of the
plates currently in use in the DSN were designed with programs that only ana-
lyzed the simple geometries such as circular [28] or rectangular holes [29]. The
technique parallels the development for the rectangular hole case except that
the waveguide modes are generated using the finite-element method (FEM).

The analysis of a thick dichroic plate with arbitrarily shaped holes
(Fig. 1-16) is carried out in a series of steps: 

1) Construct a model of a half-space infinite array

2) Develop a complete set of basis functions with unknown coefficients for
the waveguide region (waveguide modes) and for the free-space region
(Floquet modes) in order to represent the electromagnetic fields

Fig. 1-16. Geometry of a thick dichroic plate with holes.
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3) Apply the boundary conditions at the interface between these two regions;
use the method of moments to compute the unknown mode coefficients

4) Calculate the scattering matrix of the half-space infinite array

5) Move the reference plane of the scattering matrix half-a-plate thickness in
the negative z direction

6) Synthesize a dichroic plate of finite thickness by positioning two plates of
half-thickness back to back

7) Obtain the total scattering matrix by cascading the scattering matrices of
the two half-space infinite arrays.

The full details of the analysis are given in [30]. Since the use of Floquet modes
and the method of moments to analyze dichroic plates are well documented in
many references [28–32], they will not be repeated here. However, a short dis-
cussion of the use of FEM to solve the arbitrarily shaped waveguide problem
will be presented. Also, an example of the most recent design of a dichroic
plate will be shown.

1.2.6.1 Finite-Element Formulation of the Waveguide Problem. As is well
known, the eigenmodes of a hollow, uniform waveguide may be determined by
solving the 2-D scalar Helmholtz equation,

(1.2-29)

Here, � represents the magnitude of an axially directed electric or magnetic
Hertz vector.

Rather than attempting to solve this eigenvalue problem directly, FEM
reframes it in variational terms. As is shown in [33], the solution of the Helm-
holtz equation with homogeneous boundary conditions is equivalent to mini-
mizing the functional � defined by

(1.2-30)

The region of integration is, of course, the waveguide cross section. If a trial
solution, �(x,y), is represented geometrically as a function spanning the region,
R, over the x,y plane, the correct function, �(x,y), is that which yields the
smallest possible value of �. 

Using a surface function, �(x,y), made up of finite surface elements of a
simple kind, FEM approximates the correct solution. For simplicity, all the ele-
mentary regions are taken to be triangles. Corresponding to each elementary
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region, the surface element will be defined by requiring that �(x,y) be a linear
function of its values at the vertices; thus, � is defined by

(1.2-31)

� is now an ordinary function of the parameters that define �, in this case the
vertex values �i:

(1.2-32)

The solution is found by minimizing F with respect to all the parameters. That
is, it will be required that

(1.2-33)

for all m. If the region, R, contains altogether N vertices, this minimization
requirement changes Eq. (1.2-30) into a matrix eigenvalue problem of order N.

In view of Eq. (1.2-32), the minimization requirement, Eq. (1.2-33), is
equivalent to

(1.2-34)

As is shown in [30], if we define the purely geometrical quantities

(1.2-35)

and

(1.2-36)

which expresses the nature of the region R and the manner of its subdivision
into elementary regions, then, in terms of these integral quantities, Eq. (1.2-34)
reads

(1.2-37)

where � is the column matrix of vertex values �i, and S and T are square matri-
ces of order N, whose elements are Smk and Tmk, as defined above. Minimiza-
tion of � is thus equivalent to the eigenvalue problem, Eq. (1.2-37), and
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solution of the latter will provide approximate eigenvalues and eigenfunctions
for the boundary-value problem. Note that S and T are always symmetric, and
the eigenvalues, therefore, always real.

1.2.6.2 Low-Cost Dichroic Design. As stated earlier, most of the plates cur-
rently in use were designed with programs that analyzed only the simple geom-
etries, such as circular or rectangular holes. Since it is too expensive to
experimentally determine FSS parameters, only designs that could be accu-
rately analyzed were chosen, and since it is expensive to empirically design the
dichroic plates, the earliest FSS designs used rectangular holes. To achieve the
sharp corners of the rectangular holes, it was necessary to use an electrical dis-
charge machining (EDM) manufacturing technique. This manufacturing tech-
nique is expensive, and an important use of the arbitrarily shaped analysis is to
enable designs that use rounded corners, which can be manufactured less
expensively. An example of a manufacturing test sample for an X-/Ka-band
dichroic plate is shown in Fig. 1-17. The plate is designed to pass the Ka-band
receive frequencies (31.7–32.2 GHz) and reflect both the X-band transmit
(7.145–7.190 GHz) and receive (8.4–8.5 GHz), and it is a direct replacement
for the X-/Ka-band plate [34] currently in use in the BWG antennas. It was
manufactured using an end-milling technique and cost one-fourth the price of
an equivalent-sized EDM-manufactured plate. An example of FEM gridding is
shown in Fig. 1-18.   

Since the analysis of arbitrarily shaped holes is quite new, only designs
using rectangular holes are currently installed in DSN BWG antennas. The cal-
culated and measured reflection coefficient of the X-/Ka-band dichroic plate
used in the 34-m BWG antennas is shown in Fig. 1-19 [34].

Fig. 1-17. Manufacture test sample for the
X-/Ka-band dichroic plate with rounded
corners.
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1.2.7 Antenna Noise-Temperature Determination

The system-noise temperature of a receiving system is the sum of the
receiver-noise temperature and the antenna temperature. The individual contri-
butions to the antenna temperature include cosmic radio noise, atmospheric
absorption, thermal radiation from the ground, and transmission line loss.

The noise temperature of an antenna is defined [2] as

(1.2-38)

where PA is the noise power delivered by the antenna over a bandwidth, B, into a
matched termination, and k is Boltzman’s constant, equal to 1.380 � 10–23 J/K.

Also, the effective antenna noise temperature can be expressed as the radia-
tion pattern-weighted environmental black body temperature T(�) averaged
over all directions; thus,

(1.2-39)

where G(�) is the antenna gain in the direction �, and P(�) is the normalized
antenna pattern gain in direction �, or

(1.2-40)

with Gm the antenna maximum gain.

Fig. 1-18. Finite-element grid-
ding of the rectangular hole
with rounded corners.
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Fig. 1-19. Calculated and measured reflection coeffi-
cient versus frequency for the X-/Ka-band/KABLE-band
dichroic plate: (a) TE polarization and (b) TM polariza-
tion.
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Evaluation of Eq. (1.2-39) may range from rough approximations or rules
of thumb to a very painstaking evaluation by numerical integration of the func-
tions involved.

1.2.7.1 Noise Temperature in BWG Systems. At the start of the BWG
antenna project (discussed in Chapter 7), noise-temperature contributions due
to BWG mirror spillover were not clearly understood. It was at first assumed
that spillover power was eventually absorbed by cold sky or by a cold front-end
receiver. However, this assumption was incorrect, and an empirical relationship
between the calculated spillover energy and noise temperature was developed
[35]. When attempting to use the empirical data from one BWG design to pre-
dict performance of another design also proved to be erroneous, it became
apparent that an accurate analytic procedure that included the effects of the
BWG shroud was required [36–39].

The major contributors to noise temperature in a BWG are the spillover
past the mirrors and the conductivity loss in both the BWG shroud walls and
reflecting mirrors.

The analytical method extends the approach of [36], which computes the
waveguide modes that are propagating in the oversized waveguides. Reference
[36] describes a PO integration procedure of the currents of the BWG mirrors,
using a Green’s function appropriate to the circular-waveguide geometry. Once
all the modes in the waveguide are known, it is a simple matter to use standard
approximations to determine the attenuation constant and, thus, the conductiv-
ity loss if the conductivity of the wall material is known. Also, all energy that
propagates toward, but spills past, a BWG mirror is assumed to be lost in the
walls of the BWG as well. The noise temperature is computed assuming both
loss components are exposed to ambient temperature. The conductivity loss in
the reflecting mirrors is a straightforward calculation, and the corresponding
noise temperature is linearly added to the other noise contributors.

The BWG tube analysis is conceptually similar to the PO analysis used in
reflector-antenna analysis. Currents induced in the BWG mirror are obtained
using a standard PO approximation of , where  is the surface
normal and Hinc is the incident field. However, the BWG analysis differs in the
methods by which the incident field on a mirror and the scattered field radiated
from the mirror are calculated.

One approach to calculating the scattered field is to use a dyadic Green’s
formulation [36], where the field scattered from a BWG mirror is computed
using the Green’s function appropriate to the cylindrical waveguide geometry.

While it is conceptually convenient to use Green’s functions to discuss the
comparison with PO, the actual computation using this approach is rather cum-
bersome. Instead, a simpler method is used to calculate waveguide fields, based
upon the reciprocity theorem. The basic problem is to find the fields radiated by

inc H n J �� ˆ2 n̂
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an arbitrary current (the PO currents on the reflector) in a cylindrical
waveguide. The problem is easily solved by expanding the radiated field in
terms of a suitable set of normal modes, with amplitude coefficients determined
by an application of the Lorentz reciprocity theorem [38].

An arbitrary field in a waveguide can be represented as an infinite sum of
the normal modes for the guide. Let the normal modes be represented by (see
Fig. 1-20)

(1.2-41)

where  represents a mode traveling in the +z direction, and  is a mode
traveling in the –z direction. For a basic normal mode description, see [40].

Let the field radiated in the +z direction by the current be represented by

(1.2-42)

and the field radiated in the –z direction by

(1.2-43)

Fig. 1-20. Geometry for computing waveguide modes.
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An application of the Lorentz reciprocity theorem [38] can show that

(1.2-44)

where  is the volume current in the waveguide.
Since we have only surface currents, the integral for the PO currents is over

the surface of the reflector. If we let

(1.2-45)

where Js is the PO currents on the mirror, then

(1.2-46)

and the total power contained in the fields is

(1.2-47)

If the spillover past the mirror is small (that is, >25-dB edge taper), the
PO currents induced on the first mirror are computed in the standard way,
by utilizing the free-space near-field radiating H-field of the horn and

. Or they may be computed by utilizing a technique similar to
the one just described to compute the propagating modes from the horn, radiat-
ing in the oversized waveguide and using the appropriate H-field derived from
these modes as the incident field. On subsequent mirrors, PO currents are com-
puted from the H-field derived from the propagating waveguide modes. The
technique is summarized in Fig. 1-21, where it should be noted that 

(1.2-48)

Power loss in the conductor is obtained using the standard technique to
compute the power dissipated in the conductor per unit length [39] as
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(1.2-49)

where

(1.2-50)

and � is the wall conductivity, a the radius, and  the tangential H field. It

should be noted that Pd is a function of z since  is a function of z (because

it is composed of more than one waveguide mode).
Power loss is computed from

(1.2-51)

where d is the distance from z1 to z2, and the attenuation constant is computed
as

(1.2-52)

where Pf is the power flow in the waveguide.
To compute noise temperature, it is convenient to separate the total RF

power originating from the horn aperture (viewed in transmission, for conve-
nience) and propagating into two parts

(1.2-53)

Fig. 1-21. Computation of fields in the BWG system.
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where Pspill is the portion that spills past the mirrors (since the mirrors do not
fill the waveguide). The value of Pspill can be computed for each mirror by inte-
grating the total power radiated from the induced mirror currents and compar-
ing it to the incident power. Note that the computation uses the induced currents
derived from the waveguide modes. It is then assumed that this spillover power
is exposed to ambient temperature since it would be lost in the tube due to mul-
tiple bounces in a lossy material.

Noise temperature, then, is composed of two parts: the noise due to the
spillover power added to the noise from the attenuation of Pm due to the con-
ductivity loss.

Total noise temperature also includes the contribution from the conductiv-
ity loss in the mirrors. Noise temperature due to conductivity loss is given as

(1.2-54)

where R is computed from the mirror conductivity, � is the free-space imped-
ance and Tamb is the ambient temperature.

An example of computing noise temperature is given in Table 1-2 for the
Deep Space Station (DSS-13) R&D antenna (whose design and performance is
fully described in Chapter 7). The table shows the calculated [37] and measured
[41] noise temperature at 8.4 GHz (X-band receive) for two different feed
horns in the DSS-13 pedestal room. The spillover energy for both feed horns is
shown in Table 1-3. Assuming a 290-K ambient temperature, the noise-temper-
ature contribution is shown in Table 1-2. The shroud is steel with conductivity
of 0.003 × 107 mhos/m, and the noise-temperature contribution is also shown
in Table 1-2. The mirrors for both feed horns are machined aluminum with con-
ductivity of  3.8 × 10–7 mhos/m. The loss for one mirror is 0.001 dB, with a
corresponding noise temperature of 0.094 K. The noise-temperature contribu-
tion for all six mirrors is 0.564 K. 

Observe that the major contributor to noise temperature in a BWG system
is the spillover energy past the mirrors. On the other hand, contribution from

Table 1-2. DSS-13 noise temperature at 8.4 GHz (X-band receive mode): 
measured versus calculated.

Feed-Horn 
Gain

Noise Temperature (K)

Spillover 
Energy

Shroud 
Conductivity

Mirror 
Conductivity

Total 
Calculated

Total 
Measured

22.5-dB 7.95 0.24 0.564 8.75 8.9
24.2-dB 0.93 0.05 0.564 1.54 2.0
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the conductivity loss in both the mirrors and shroud is small. The analytical
technique that includes the effects of the shroud has been shown to be a reason-
ably accurate method to predict noise temperature.

1.3 Measurement Techniques

A number of sophisticated measurement techniques are required to prop-
erly characterize the performance of a large reflector antenna. First, there is a
need to accurately measure the main reflector surface. This measurement is
determined either by theodolite or microwave holography. Second, measuring
gain or efficiency is required, and third, noise temperature.

1.3.1 Theodolite Measurements

Theodolite measurements are typically used in the initial alignment of the
antenna after installation of the reflector panels. The method of determining the
reflector surface is based on angular measurements made with a theodolite
[42,43]. The theodolite is placed at the main reflector vertex and is used to
measure the angles to targets installed at the individual reflector panel corners.
After the panels are installed on the antenna, the surface panels are drilled using
the holes in a metal strap gauge as a template for placing targets.

Errors in theodolite measurements are due to uncertainty in the angular
measurement of the target position and radial distance to the target. At a radius
of 13 m, which is the surface area median radius for a 34-m antenna, a
0.001-deg error in the angle to the target corresponds to a 0.2-mm error normal
to the surface; a 1.0-mm error in the radial distance corresponds to a 0.26-mm
error normal to the surface.

Table 1-3. Spillover energy in the DSS-13 BWG system (X-band transmit mode).

Spillover (percent)

Mirror
22.5-dB Feed Horn 24.2-dB Feed Horn

Each Mirror Total Each Mirror Total

M6 0.36 0.36 0.00 0.00
M5 1.02 1.38 0.12 0.12
M4 0.25 1.63 0.00 0.12
M3 1.04 2.67 0.20 0.32
M2 0.04 2.71 0.00 0.32
M1 0.03 2.74 0.00 0.32
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A typical error budget [43] for the surface error budget of a 34-m antenna is
0.3-mm root-sum-square (rss). By far, the greatest source of error is in the
radial distance measurement provided by using a drill tape. If, instead, a laser
range finder is used to measure radial distance, the error could improve from
0.3-mm rms to 0.2-mm rms. In any case, microwave holography has been used
to characterize and reset the main reflector surface after initial operation, using
the theodolite-set panels.

During 2000 and 2001, a Leica TDM-5000 “total station” theodolite was
used to measure all three of the DSN 70-m antennas [44]. The instrument mea-
sures vertical and horizontal angles and distances, downloads them to a desktop
computer, which converts the coordinates from the spherical to a Cartesian sys-
tem and can be used to command the instrument to motor to a desired look
angle.

Theodolites are used to measure DSN antennas in the following manner:
The theodolite is bolted securely to the bracket close to the center of the main
reflector. The theodolite’s gravity compensator is turned off so that it will rotate
with the reflector.

Targets are placed in 12 concentric rings, wherever cables, supports, or
other equipment in the feed support structure do not block the view. The targets
are made up of 20-mm, square pieces of tape, 0.33-mm thick, attached to the
front face of black plastic mounts such that the visible target crosshair is 11.15
mm above and normal to the local reflector surface. The estimated target height
variation is on the order of ± 0.38 mm. See [44] for photographs of the targets
and visible target placements.

The total station theodolite described above measures distance and angles
from the instrument to the target on the reflector surface. The measurement
geometry is shown in Fig. 1-22. The range and angle data is used to compute
the error normal to the reflector surface for surface adjustment or to determine
the half-path-length error for antenna efficiency calculations.

The major error contributors are the angle reading error, distance measure-
ment error, and targeting error. However, by viewing a target as closely as pos-
sible to tangent to the surface, the effect of distance measurement error inherent

Fig. 1-22. Reflector measurement geometry.
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in the theodolite is minimized. In the worst case, the farthest target is 36.44 m
from the vertex of the main reflector. Using this distance with the estimated
operator angle accuracy of ± 3 arcsec gives a peak surface-normal measure-
ment error of ± 0.5 mm.

For a parabolic main reflector with a theodolite at the vertex, the slope of
the theodolite line-of-sight to any target is half of the parabola surface slope at
the target. For the 70-m shaped main reflector with a nominal focal length of
27.05 m, the edge slope at 35-m radius is 33 deg, so the reflector surface is
tilted by as much as 16.5 deg to the theodolite line-of-sight. Based on a distance
measurement error of 1.3 mm, this component of the measurement error is
1.3 tan (16.5 deg) = ± 0.38 mm.

Figure 1-23 shows the estimated 1-sigma measurement error normal to the
surface as a function of distance from the instrument to the target. The angle,
range, and targeting error components are shown with the rss total and the area
weighted 1-sigma rms half-path-length error of 0.17 mm.

The reflector coordinate system is based on a reference file created from
the nominal target locations. First, the nominal target coordinates are calculated
based on the measured reflector surface arc length, circumferential spacing,
and reflector radial surface shape. Then, they are combined into a reference
file. The theodolite system motors to the nominal location of each target, the
target is placed precisely in the theodolite crosshairs, then measured and
recorded. When all of the targets are measured the first time at zenith, the data
is best-fit to the theoretical coordinates in the reference file to transform the
coordinates from a theodolite-centered coordinate system to the reflector
system. No reference points, which might indicate the true reflector optics, are
used in any of the measurements. The recorded target locations thus

Fig. 1-23. Measurement error (1 sigma).
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transformed become the new reference target file used in all subsequent
measurements.

The measured data is fit to the theoretical surface of the shaped main
reflector. Residual surface errors at each point are determined and rms accuracy
of the surface computed. Results are presented as half-path-length errors
(HPLEs) in millimeters. The HPLE is the usual presentation of surface errors,
which relates surface rms to gain loss [45].

Table 1-4 shows the calculation of the rms errors after best-fitting for all
three 70-m antennas. The best-fitting applied performs a least-squares fit using
six degrees of freedom: translation in x, y and z; rotation about x and y; and
focal point adjustment, since there is a motorized subreflector. The first data
row is for all measured points. The second row removes the inner panel, which
is blocked by the subreflector, and the outer panel, which is not included in the
alignment derived from the holographic measurement.

With minor adjustments to the theodolite and a comfortable working plat-
form for the operator, primary surface and subreflector position measurements
as described above can be performed at any elevation angle for a tracking
antenna. For antenna structures that behave in a linear elastic fashion, measure-
ments at three separate elevation angles provide sufficient information to deter-
mine the relative positions of all targets at any other angle. (A common
example of nonlinear structural deformation is the bending of bolted flanges.)
The process requires the intermediate calculation of the face-up (zenith-point-
ing) and face-side (horizon-pointing) gravity deformations of the reflector, and
their subsequent vector superposition. The best results will be achieved if the
elevation angles at which measurements are made are well separated, such as 0,
45, and 90 deg. For the 70-m antennas, the analysis was based on measure-
ments made at 13, 47, and 89 deg.

The gravity deformation of a linear elastic structure at any elevation angle
can be derived by vector superposition for the face-up and face-side gravity
vectors as

(1.3-1)

where

7s = face-side gravity deformation

7u = face-up gravity deformation.

The face-up and face-side deformations described here are of the type
derived from a computer structural analysis in which gravity is “turned on”
from a particular direction. As such, the deformations cannot be directly mea-
sured in the real world.
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For a linear elastic structure that rotates from angle �1 to �2, the relative
deformation, or motion, will be �2 – �1, as shown above. For three measure-
ments, two independent linear equations can be written for �2 – �1 and �3 – �1

(1.3-2)

Now that �u and �s are known, for any angle �, the predicted alignment
error at a target is the gravity deformation traveling from a measured reference
angle (�2) to angle ��superposed onto the actual measured alignment error at
the reference angle (�q). This can be expressed as

(1.3-3)

It is possible to use measurements at more than three angles and develop an
overdetermined set of equations for �u and �s that can be solved in a least-
squares sense. This would help average errors in the individual datasets.

The gravity analysis of DSS-43 (the 70-m antenna near Canberra, Austra-
lia) was performed using measurements from 13, 47, and 89 deg of elevation.
The predicted HPLE at each of the measured points was calculated at 5-deg
elevation intervals from 0 to 90 deg, plus 13, 30, 47, 68, and 89 deg, using the
actual measured data. By definition, the predictions at 13, 47, and 89 deg per-
fectly matched the input data.

The above process was repeated, recording the predicted gravity deforma-
tions with respect to the nominal rigging angle of 47 deg.

The rms data is summarized in Fig. 1-24. The curves show that the mea-
sured data at 30 and 68 deg closely matches the predicted values.

Using the all-angle main reflector surface shape data in a PO calculation,
with the 70-m feed and subreflector configuration, an efficiency value was
determined for all three antennas. The value is shown in Fig. 1-25. This pre-
dicted efficiency value is compared to the measured efficiency at DSS-14
shown in Fig. 1-26. It is interesting to note that all three 70-m antennas have
similar distortions due to gravity. 

1.3.2 Microwave Holography

Microwave holography [46–48] has proven to be a valuable technique for
characterizing the mechanical and RF performance of large reflector antennas.
This technique utilizes the Fourier transform relation between the far-field radi-
ation pattern of an antenna and the aperture-field distribution. Resulting aper-
ture phase and amplitude data can be used to characterize various performance
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parameters, including panel alignment, panel shaping, subreflector position,
antenna aperture illumination, and gravity deformation effects.

Fig. 1-24. Summary of predicted versus measured surface rms and
gravity deformation for DSS-43.

Fig. 1-25. Computed efficiencies derived from main reflector
surface measurements.



Introduction 47

The raw data (the observable) for this technique is the complex far-field
pattern of the antenna under test. For large reflector antennas, geostationary sat-
ellites are commonly used as far-field signal sources. Figure 1-27 presents a
typical narrowbandwidth receiver system architecture based on a Hewlett-
Packard P8510B analyzer and an external phase-locked loop (PLL) (with a
variable PLL bandwidth of 1 to 20 Hz) used for receiving the narrowband bea-
con signal from the satellite. The reference antenna is needed as a phase refer-
ence for the measurement as well as to keep the receiver in phase lock with the
carrier [49,50].

The mathematical details for microwave holography are given in [47],
among others, and are repeated here for completeness.

The mathematical relationship between an antenna far-field radiation pat-
tern (T) and the antenna surface-induced current distribution (J) is given by the
exact radiation integral [51]

(1.3-4)

where

z�(x�, y�) = surface, S

(u,v) = directional cosine space

� = observation angle.

Fig. 1-26. Computed and measured 70-m antenna efficiencies
for DSS-14.
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For small observation angles of the far-field pattern, this expression
becomes a Fourier transform relationship

(1.3-5)

To derive the residual surface error, GO ray tracing is used to relate the
small normal error, �, directly to an aperture phase error in a main reflector
paraboloid geometry (Fig. 1-28). In this small error approximation, it is
assumed that the aperture phase error is entirely due to the projected surface
errors. In addition, the 3-D structure of the surface error is not recovered;
rather, an axial component equal to the average error over the resolution cell
size is recovered. The normal error can then be computed using the paraboloid
geometry.

Fig. 1-27. Holography measurement block diagram.
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sx, sy = sampling intervals in the aperture coordinates

n, m, p, q = integers indexing the discrete samples

�u, �v = sampling intervals in u, v far-field space.

Since the magnitude of the far-field pattern is essentially bounded, the fast
Fourier transform (FFT) is generally used for computation and is symbolized
here by F. Solving for the residual normal surface error and substituting
Eq. (1.3-7) yields

(1.3-10)

Accuracy across the holographic map varies with aperture amplitude illu-
mination. Accuracy is better at the center of the dish and gradually worsens
toward the edge, where illumination falls off rapidly. For a uniformly illumi-
nated antenna design, accuracy remains relatively constant, becoming quickly
worse just at the edge, also where the illumination falls off rapidly. Typically,
accuracies of 0.05 mm to 0.10 mm were achieved with a corresponding signal-
to-noise ratio (SNR) of 73 dB to 60 dB.

The resulting aperture phase function needs to be corrected for modulo-2�
phase errors, which occur due to the small measurement wavelength and a large
phase error that is partially caused by pointing and subreflector position errors.
Next, it is necessary to remove phase errors due to pointing and subreflector
position errors, and this is done via the global best-fit paraboloid. Here, the
entire dataset is weighted-least-squares-fitted to the paraboloid, permitting six
degrees of freedom in the model, three vertex translations, two rotations, and a
focal length change. The antenna surface axial rms error is then computed with
respect to the position of the fitting paraboloid.

The resultant aperture function at the end of this process is defined here as
the effective map, since it includes all phase effects contributing to antenna per-
formance. These frequency-dependent effects include subreflector scattered
(frequency-dependent) feed phase function and diffraction effects due to the
struts. Removal of the feed phase function and subreflector support structure
diffraction effects results in a frequency-independent map, which is defined
here as the mechanical map. In general, the panel-setting information is derived
from the mechanical map, since the antenna needs to be operated over a range
of frequencies. Panel-setting information is derived by sorting all the data
points within each panel and performing a rigid-body least-squares fit. The
algorithm allows for one translation and two rotations.
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1.3.3 Aperture Gain and Efficiency Measurements

 Determination of aperture efficiency follows a JPL-developed methodol-
ogy [52,53]. For a radio source of known flux density, the increase in system-
noise temperature as determined by the boresight measurements is a measure-
ment of antenna efficiency.

Peak radio source noise temperatures are measured via a boresight algo-
rithm [54]. These measured quantities are then normalized by T100/Cr , where
T100 is the 100 percent antenna efficiency temperature, and Cr is the source
size-correction factor [52,55]. Values of the temperature Ta = T100/Cr for radio
sources used to calibrate DSN antennas are given in [56]. The effects of atmo-
spheric attenuation must also be considered; for this reason, the final measured
values are then corrected for yield vacuum conditions.

The typical method used to measure system-noise temperature in DSN
antennas is the seven-point boresight technique. This method moves the
antenna sequentially in both the cross-elevation (XEL) and elevation (EL)
direction, both on- and off-source. In each direction, the antenna is positioned
off-source 10 half-power (one-sided) beamwidths; one half-power beamwidth
at the 3-dB point; approximately 0.576 half-power beamwidths at the 1-dB
point; on-source; and then similar offsets on the other side. For example, at
X-band with the 34-m antenna, the full 3-dB beamwidth is 65 mdeg. The off-
sets used were 325, 32.5, 18.7, and 0 deg in each direction. At Ka-band, with a
full 3-dB beamwidth of 17 mdeg, the offsets were 85, 8.5, 4.9, and 0 mdeg.

For each scan, an off-source baseline is generated from the two off-source
points. A Gaussian curve (relative to the baseline) is fitted to the five remaining
on-source points, and the peak value of the curve is calculated. Also, the posi-
tion of the peak is calculated as a measure of the pointing error for that scan.
One pair of scans (one XEL and one EL) is considered to be one measurement
or data point. The seven pointing offsets for each new scan are corrected for
pointing errors found from the previous similar scan, in order to maintain point-
ing throughout a track.

As defined here, the efficiency is referenced to the input of the low-noise
amplifier (LNA) and includes the losses of the feed system. Alternative meth-
ods specify efficiency at the aperture of the feed horn or at the antenna aperture
itself. The term “aperture efficiency” refers to antenna gain relative to that of a
uniformly illuminated circular aperture having the same diameter as the
antenna; for example, a 70-percent-efficient antenna has 1.549-dB less peak
gain than does the circular aperture.

The radio-source noise-temperature increase measured by the antenna is
given by [57]:

(1.3-11)
prCkC

SA
 T 
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where

�� =� antenna aperture efficiency

S = radio source flux (W/m2/Hz)

A = antenna area (m2)

k = Boltzmann constant (1.3806503 � 10–23 J/K)

Cr = source size correction, typically 1.0 for point sources, up to ~1.5
for extended sources, including planets

Cp = pointing correction, assumed = 1.0.

The flux, S, is typically given in units of “Janskys,” where 1 Jansky
(Jy) = 1 � 10–26 W/m2/Hz.

Measured �T is compared with the quantity [(SA)/(2kCr)] to give antenna
efficiency. Thus,

(1.3-12)

The value T100 is what would be measured by a perfect antenna looking at a
point source emitting the same flux as the observed radio source. The value of
Cr is a function of the source structure at a given frequency and the pattern of
the antenna at that frequency. For a given antenna, frequency, and radio source,
the T100/Cr can thus be specified.

The �T is an on–off source measurement, and Earth’s atmosphere attenu-
ates the true source contribution that would be measured under vacuum condi-
tions. The total atmospheric attenuation is estimated from surface weather
conditions during all measurements. The surface temperature, pressure, and rel-
ative humidity at the site are recorded every half hour. Typical zenith values of
attenuation at Goldstone under average clear-sky conditions are:

X-band: Azen = 0.035 dB

Ka-Band: Azen = 0.115 dB

The attenuation in decibels at elevation angle, �, is modeled as:

(1.3-13)
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The loss factor at that elevation angle is:

(1.3-14)

The “vacuum �T ” then becomes:

(1.3-15)

1.3.4 Noise-Temperature Measurements

There are a variety of noise-temperature measurement techniques and
instruments used in the DSN. Some of the instruments are a total power radi-
ometer, a noise-adding radiometer, thermal noise standards (cryogenically
cooled, ambient, and hot), all well described in [58]. These instruments typi-
cally calibrate low-noise systems by injecting a known amount of noise from
either a gas tube or solid-state noise diode into the input. The system output
power ratio is then used to calculate the operating noise temperature. It can be
difficult to determine the equivalent noise temperature of the noise source, as
defined at the receive input, because of component and transmission line loss
between the noise source and the receiver. The calibration involves either eval-
uating the noise source and loss separately or calibrating the excess noise tem-
perature directly at the receiver input.

However, a measurement technique that eliminates this problem and that is
most often used for the low-noise (<<300 K) receiving systems in the DSN is
the ambient termination technique [59]. The operating-noise-temperature cali-
brations are performed by alternately connecting the LNA input with a
waveguide switch between the antenna and an ambient termination. The same
effect is accomplished by alternately placing and removing an absorber load
over the front of the feed horn.

The operating noise temperature of a receiving system can be expressed as

(1.3-16)

where

Ta = antenna temperature (K)

Te = receiver effective noise temperature (K).

Figure 1-29 shows a simplified block diagram of the instrumentation for
operating noise-temperature calibrations. The precision attenuator is adjusted
for equal output power when the receiver input is alternately connected to the
ambient load and the antenna. The power ratio for an individual measurement is
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(1.3-17)

where

Tp = ambient termination physical temperature (K)

Te = receiver effective noise temperature (K)

Top(i) = individual operating noise-temperature measurement (on 
antenna) (K).

Rearranging Eq. (1.3-17) gives

(1.3-18)

A series of measurements is made, and a best estimate in a least-squares
sense of Yap is obtained.

The operating noise temperature is then given by

(1.3-19)

The ambient termination temperature is measured, and the receiver temper-
ature is estimated or calibrated. It is not necessary to know Te accurately if
Te << Tp.

In the past, the waveguide-beyond-cutoff attenuator was the most accurate
instrument to measure Y-factors. Consequently, the equations were written in

Fig. 1-29. Simplified block diagram of the operating-noise-temperature
calibration instrumentation.
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terms of Y-factors. Most recently, however, the power meter has been more
accurate and convenient; in addition, it mates easily with computers. Measure-
ments in [60,61] do not use Y-factors but deal directly with power meter read-
ings, in watts.

1.4 Techniques for Designing Beam-Waveguide 
Systems

A BWG feed system is composed of one or more feed horns with a series
of flat and curved mirrors arranged so that power can be propagated from the
feed horn, through the mirrors to the subreflector and main reflector, with min-
imum losses. 

Feeding a large low-noise ground antenna via a BWG system has several
advantages over placing the feed directly at the focal point of a dual-reflector
antenna. For example, significant simplifications are possible in the design of
high-power, water-cooled transmitters and low-noise cryogenic amplifiers. The
feed horns do not have to rotate, a normally fed dual reflector does. For this
reason, feed horns and other equipment can be located in a large, stable enclo-
sure at an accessible location. Also, since BWG systems can transmit power
over considerable distances at very low losses, they are useful in the design of
very-high-frequency feed systems.

Since 1991, when the then-new DSS-13 R&D antenna was designed and
constructed, the DSN has made extensive use of BWG feed systems. Various
systems [62] have been designed using Gaussian-beam analysis, GO, and PO.
In addition, more recently, a new technique based on a conjugate-phase-match-
ing focal-plane method has been used. This section will outline each technique,
discuss its advantages and disadvantages, and indicate where in the DSN it has
been used.

Many existing BWG systems use a quasioptical design, based on Gaussian-
wave principles, which optimize performance over an intended operating-fre-
quency range. This type of design can be made to work well with relatively
small reflectors (a very few tens of wavelengths) and may be viewed as “band-
pass,” since performance suffers as the waveglength becomes very short as
well as very long. The long-wavelength end is naturally limited by the
approaching small D/� of the individual BWG reflectors used; the short-wave-
length end does not produce the proper focusing needed to image the feed at the
dual-reflector focus. In contrast, a purely GO design has no upper frequency
limit, but performance suffers at long wavelengths. Such a design may be
viewed as “highpass.” The design for DSS-13 (see Chapter 7 of this mono-
graph) was based upon a highpass design while the design for operational
BWG antennas (see Chapter 8) was based on a bandpass design.
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If there is a need to add frequencies to an existing BWG design outside of
the original design criteria, it is sometimes difficult to generate a new solution
by a straightforward analysis because of the large number of scattering surfaces
required for computation. A unique application of the conjugate phase-match-
ing technique that simplifies the design process is described in Chapter 7,
which presents an example of incorporating a low-frequency S-band system
into the “highpass” BWG system.

Most BWG systems refocus energy at some point along the path, but this
may not be desired in high-power applications. A design technique using PO,
described below, does not degrade either the peak or average power handling
capability beyond the limitations imposed by either the feed or the dual reflec-
tor configuration. The Antenna Research System Task (ARST) antenna (see
Chapter 9) was designed for high-power applications.

1.4.1 Highpass Design

The design for the highpass BWG system is based on GO criteria intro-
duced by Mizusawa and Kituregawa [63,64], which guarantee a perfect image
from a reflector pair. Mizusawa’s criteria can be briefly stated as follows: For a
circularly symmetric input beam, the conditions on a conic reflector pair neces-
sary to produce an identical output beam are that

• The four loci (two of which may be coincident) associated with the two 
curved reflectors must be arranged on a straight line

• The eccentricity of the second reflector must be equal to the eccentricity or 
the reciprocal of the eccentricity of the first reflector.

Figure 1-30 shows some curved reflector pair orientations that satisfy
Mizusawa’s criteria.

Fig. 1-30. Examples of two curved-reflector BWG configurations.
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This technique was used for the first DSN BWG antenna (DSS-13), the
design of which is shown and described in detail in Chapter 7 of this mono-
graph. The design of DSS-13’s center-fed BWG consists of a beam-magnifier
ellipse in a pedestal room located below ground level that transforms a 22-dB
gain feed horn into a high-gain 29-dB pattern for input to a Mizusawa four-mir-
ror (two flat and two paraboloid-case) BWG system [see Fig. 1-30(b) and
1-31]. The system was initially designed for operation at 8.45 GHz (X-band)
and 32 GHz (Ka-band) and loses fewer than 0.2 dB at X-band (determined by

Fig. 1-31. DSS-13 highpass BWG design.
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comparing the gain of a 29-dB gain horn feeding the dual-shaped reflector sys-
tem with that obtained using the BWG system).

Since the upper BWG has an 8-ft (2.44-m)-diameter projected aperture, the
mirrors are 70 wavelengths at X-band and 260 wavelengths at Ka-band. These
mirrors are large enough to use GO design criteria.

Even though the design was based upon GO, all performance analysis was
done using PO computer programs.

1.4.2 Focal-Plane Matching

The DSS-13 BWG system was initially designed (see Chapter 7 of this
monograph for details of Phase I) for operation at X-band (8.45 GHz) and
Ka-band (32 GHz) and utilized a GO design technique. The addition of S-band
(2.025–2.120 GHz transmit and 2.2–2.3 GHz receive) was scheduled for a later
phase. (At S-band, the mirror diameter is only 19 wavelengths, clearly outside
the original GO design criteria.)

If a standard JPL 22-dB S-band feed horn is placed at the input focus of the
ellipse, the BWG loss is greater than 1.5 dB. This is primarily because for low
frequencies, the diffraction phase centers are far from the GO mirror focus,
resulting in a substantial spillover and defocusing loss. The defocusing is espe-
cially a problem for the beam-magnifier ellipse, where the S-band phase center
at the output of the ellipse is three meters from the GO focus.

A potential solution is to redesign the feed horn to provide an optimum
solution for S-band. The question is how to determine the appropriate gain and
location for this feed.

A straightforward design by analysis would prove cumbersome because of
the large number of scattering surfaces required for the computation. Therefore,
a unique application was made of the conjugate phase-matching techniques to
obtain the desired solution [65]. Specifically, a plane wave was used to illumi-
nate the main reflector and the fields from the currents induced on the subre-
flector propagated through the BWG to a plane centered on the input focal
point. By taking the complex conjugate of the currents induced on the plane
and applying the radiation integral, the far-field pattern was obtained for a the-
oretical feed horn that maximized antenna gain.

There is no a priori guarantee that the patterns produced by this method
will be easily realized by a practical feed horn. However, for DSS-13, the pat-
tern was nearly circularly symmetrical, and the theoretical horn was matched
fairly well by a circular corrugated horn.

The corrugated feed-horn performance was only 0.22 dB lower than that of
the optimum theoretical horn and about 1.4 dB better than by using the 22-dB
feed horn. Subsequently, a system employing the corrugated feed horn was
built, tested, and installed in the DSS-13 34-m BWG antenna as part of a simul-
taneous S-/X-band receiving system [66].
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1.4.3 Gaussian-Beam Design

While GO is useful for designing systems with electrically large mirrors
(>50-wavelength diameter with –20-dB edge taper), some BWGs may be oper-
ated at low frequencies, where the mirrors may be as small as 20 wavelengths
in diameter. Due to diffraction effects, the characteristics of a field propagated
between small BWG mirrors (<30 wavelengths in diameter) will be substan-
tially different from those resulting from the GO solution. For these cases, the
Gaussian-beam technique is used.

Solutions to the paraxial wave equation are Gaussian-beam modes. These
solutions describe a beam that is unguided but effectively confined near an
axis. The zero-order mode is normally used in the design. A major advantage of
applying the Gaussian-beam technique is the simplicity of the Gaussian for-
mula, which is easy to implement and requires negligible computation time.
Because of the negligible computation time, a Gaussian solution can be incor-
porated with an optimization routine to provide a convenient method to search
the design parameters for a specified frequency range, mirror sizes and loca-
tions, and feed-horn parameters.

Goubau [67] gave the first mathematical expression of Gaussian modes
derived from the solution of Maxwell’s equations described by a continuous
spectrum of cylindrical waves. Chu [68] developed the Fresnel zone imaging
principle of the Gaussian beam to design a pseudo frequency-independent
BWG feed. Betsudan, Katagi, and Urasaki [69] used a similar imaging tech-
nique to design large ground-based BWG antennas. McEwan and Goldsmith
[70] developed a simple design procedure based on the Gaussian-beam theory
for illumination of reflector antennas where the reflector is electrically small or
in the near field of a feed.

Although Gaussian-beam analysis is fast and simple, it is less accurate than
the PO solution for smaller mirrors (<30 wavelengths in diameter). However,
by designing with Gaussian-beam analysis, then checking and adjusting using
PO analysis, an accurate and efficient tool can be fashioned. Veruttipong [71]
developed such a tool for designing a second 34-m BWG antenna for the DSN.
The goal was to provide good performance over the range of 2 to 32 GHz. (As
demonstrated by design and measurements, the use of the GO technique in con-
junction with the focal-plane-matching technique produced an antenna with
virtually the same characteristics as the antenna designed using Gaussian-beam
analysis [see Chapters 7 and 8].)

The design of this antenna is similar to that of DSS-13 (see Fig. 1-31) in
that it uses three curved mirrors (one in the basement room and two rotating in
azimuth) and a 34-m dual-shaped reflector antenna (Fig. 1-32). Multiple-fre-
quency operation is provided by the use of dichroic mirrors. The desire is to
have the radius of curvature and –18-dB beam diameter of the Gaussian beam



60 Chapter 1

at the subreflector be the same at all frequencies. The size and locations of the
mirrors are relatively fixed because of the basic structure geometry, so the per-
tinent variables are the feed-horn diameters, horn positions, and mirror curva-
tures. Approximating the mirrors by a thin-lens formula (Fig. 1-33) and using
Gaussian-mode analysis to iterate the various design parameters, a design is
achieved that meets the initial design constraint of identical patterns at the sub-
reflector. Using the technique described above, a 34-m BWG antenna was built
and measured at S-, X-, and Ka-bands (see Chapter 8 for details).

Fig. 1-32. Operational BWG antenna.
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1.4.4 High-Power Design

Observe that the GO technique used to design the BWG system images
(refocuses) the feed horn at a location near the main reflector (position F1 in
Fig. 1-31).

The refocusing of the feed system energy near the main reflector has two
distinct disadvantages. For one, although the phase center is inside the feed, the
peak field point is generally at or in front of the feed itself. Thus, this peak
power point is imaged in front of the main reflector. If the peak field point can
be contained within the BWG system, there is the possibility to fill the BWG
tube with a gas to enhance the peak power-handling capability of the system.
Also, when energy is reflected from a surface such as a BWG mirror, there is a
6-dB enhancement of the power near the reflector, since the incident and reflec-
tor field add coherently near the reflection point.

It is thus important to have the energy near the mirrors at least 6 dB below
the peak point in order to prevent the mirrors from degrading the power-han-
dling capability of the system. This is difficult to do if the energy is refocused
in the BWG system. For these reasons, an unconventional design required for
the BWG optics. Figure 1-34 shows the geometry of optics for the high-power
design antenna ([72] and Chapter 9).

For this design, only one curved mirror—a paraboloid—is used, along with
three flat mirrors. The radiation from the feed horn is allowed to spread to the
paraboloid, where it is focused to a point at infinity. That is, after reflection, a
collimated beam exists that is directed to the subreflector by the three flat
reflectors. The energy is thus spread over the entire 9-ft (2.74-m) diameter of
the BWG tube. The beam reflected by the paraboloid does not begin to spread
significantly due to diffraction until it exists through the main reflector. Addi-
tional spreading occurs in the region between the main reflector and the subre-
flector. Since a collimated beam exists beyond the first mirror, the design of
this antenna is closely related to a near-field Cassegrain design, if the feed sys-

Fig. 1-33. Parameters for BWG Gaussian design.
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tem is defined to include both the feed horn and a parabolic mirror. The main
reflector and subreflector are then determined through a standard symmetric
uniform aperture synthesis program using the PO-determined input pattern
radiated from the feed and four mirrors. Design and performance are described
in detail in Chapter 9.

Fig. 1-34. Design for a high-power BWG.



Introduction 63

1.5 Summary

Since it is usually impractical to build a scale-model antenna to test new
designs, accurate analytical techniques are required. These analytical tech-
niques have evolved to the point where they can reliably and accurately predict
the performance of a new design, thus eliminating the need for trial and error.
The measurement techniques that have been developed can accurately charac-
terize the performance of the antennas.

The remainder of this monograph describes in detail the RF design and per-
formance of the large antennas of the DSN and illustrates the use of these tech-
niques. Included are comparisons made between the predicted and measured
performance of the antennas.
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